HANDWRITTEN RECOGNITION BY USING MACHINE LEARNING APPROACH
نویسندگان
چکیده
منابع مشابه
Handwritten digit Recognition using Support Vector Machine
Handwritten Numeral recognition plays a vital role in postal automation services especially in countries like India where multiple languages and scripts are used Discrete Hidden Markov Model (HMM) and hybrid of Neural Network (NN) and HMM are popular methods in handwritten word recognition system. The hybrid system gives better recognition result due to better discrimination capability of the N...
متن کاملHandwritten Bangla Digit Recognition Using Deep Learning
In spite of the advances in pattern recognition technology, Handwritten Bangla Character Recognition (HBCR) (such as alpha-numeric and special characters) remains largely unsolved due to the presence of many perplexing characters and excessive cursive in Bangla handwriting. Even the best existing recognizers do not lead to satisfactory performance for practical applications. To improve the perf...
متن کاملHolistic Farsi handwritten word recognition using gradient features
In this paper we address the issue of recognizing Farsi handwritten words. Two types of gradient features are extracted from a sliding vertical stripe which sweeps across a word image. These are directional and intensity gradient features. The feature vector extracted from each stripe is then coded using the Self Organizing Map (SOM). In this method each word is modeled using the discrete Hidde...
متن کاملNamed Entity Recognition without Gazetteers Using a Machine Learning Approach
Gazetteers, such as lists of names of persons, organizations, locations and other entities, have been always mentioned as a bottleneck of a Named Entity (NE) Recognition (NER) system. This paper proposes a modified Hidden Markov Model (HMM) and an HMM-based chunk tagger, from which a NER system is built to recognize and classify names, times and numerical quantities. Through the modified HMM, o...
متن کاملPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Engineering Applied Sciences and Technology
سال: 2020
ISSN: 2455-2143
DOI: 10.33564/ijeast.2020.v04i11.099